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We consider a model of a random copolymer at a selective interface which under-
goes a localization/delocalization transition. In spite of the several rigorous results
available for this model, the theoretical characterization of the phase transition has
remained elusive and there is still no agreement about several important issues, for
example the behavior of the polymer near the phase transition line. From a rig-
orous viewpoint non coinciding upper and lower bounds on the critical line are
known.

In this paper we combine numerical computations with rigorous arguments to get to
a better understanding of the phase diagram. Our main results include:
–Various numerical observations that suggest that the critical line lies strictly in between
the two bounds.
–A rigorous statistical test based on concentration inequalities and super–additivity, for
determining whether a given point of the phase diagram is in the localized phase. This
is applied in particular to show that, with a very low level of error, the lower bound
does not coincide with the critical line.
–An analysis of the precise asymptotic behavior of the partition function in the delo-
calized phase, with particular attention to the effect of rare atypical stretches in the
disorder sequence and on whether or not in the delocalized regime the polymer path
has a Brownian scaling.
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–A new proof of the lower bound on the critical line. This proof relies on a character-
ization of the localized regime which is more appealing for interpreting the numerical
data.

KEY WORDS: Disordered Models; Copolymers; Localization Transition; Large
Deviations; Corrections to Laplace estimates; Concentration of Measure; Transfer
Matrix Approach; Statistical Tests.
2000 MSC: 60K37, 82B44, 82B80

1. INTRODUCTION

1.1. The Model

Let S = {Sn}n=0,1,... be a random walk with S0 = 0 and Sn = ∑n
j=1 X j , {X j } j

a sequence of IID random variables and P (X1 = 1) = P (X1 = −1) = 1/2. For
λ ≥ 0, h ≥ 0, N ∈ 2N and ω = {ω j } j=1,2,... ∈ R

N we introduce the probability
measure Pλ,h

N ,ω defined by

dPλ,h
N ,ω

dP
(S) = 1

Z̃λ,h
N ,ω

exp

(
λ

N∑
n=1

(ωn + h) sign (Sn)

)
, (1.1)

where Z̃λ,h
N ,ω is the partition function and sign (S2n) is set to be equal to sign (S2n−1)

for any n such that S2n = 0. This is a natural choice, as it is explained in the
caption of Fig. 1.

Fig. 1. The process we have introduced is a model for a non–homogeneous polymer, or copolymer,
near an interface, the horizontal axis, between two selective solvents, say oil (white) and water (grey).
In the drawing the monomer junctions are the small black rounds and the monomers are the bonds of
the random walk. The big round in the middle of each monomer gives the sign of the charge (white =
positive charge = hydrophobic monomer, black = negative charge = hydrophilic monomer). When
h > 0 water is the unfavorable solvent and the question is whether the polymer is delocalized in oil
or if it is still more profitable to place a large number of monomers in the preferred solvent, leading
in such a way to the localization at the interface phenomenon. The conventional choice of sign(0) we
have made reflects the fact that the charge is assigned to bonds rather than points.
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For what concerns the charges ω we put ourselves in a quenched set–up: ω

is a typical realization of an IID sequence of random variables (we denote by P its
law). We suppose that

M(α) := E [exp (αω1)] < ∞ , (1.2)

for every α and that E [ω1] = 0. Moreover we fix E [ω1
2] = 1.

1.2. The Free Energy and the Phase Diagram

We introduce the free energy of the system

f (λ, h) = lim
N→∞

1

N
log Z̃λ,h

N ,ω. (1.3)

The limit has to be understood in the P ( dω)–almost sure sense, or in the L1 (P)
sense, and f (λ, h) does not depend on ω. A proof of the existence of such a limit
goes along a standard superadditive argument and we refer to (14) for the details,
see however Sect. 2.1 below. By convexity arguments one easily sees that the free
energy is a continuous function.

We observe that

f (λ, h) ≥ λh. (1.4)

In fact if we set �+
N = {S : Sn > 0 for n = 1, 2, . . . , N }

1

N
log Z̃λ,h

N ,ω ≥ 1

N
log E

[
exp

(
λ

N∑
n=1

(ωn + h) sign (Sn)

)
; �+

N

]

= λ

N

N∑
n=1

(ωn + h) + 1

N
log P(�+

N )
N→∞−→ λh, (1.5)

where the limit has to be understood in the P( dω)–almost sure sense: notice that
we have used the law of large numbers. We have of course also applied the well
known fact that P(�+

N ) behaves like N−1/2 for N large [12, Ch. III]. In view of
(1.3) and of (1.5) we partition the phase diagram in the following way:

• The localized region: L = {(λ, h) : f (λ, h) − λh > 0};
• The delocalized region: D = {(λ, h) : f (λ, h) − λh = 0}.
This phase diagram decomposition does correspond to different behaviors of

the trajectories of the copolymer: we will come back to this important issue in
Sect. 1.4

We sum up in the following theorem what is known about the phase diagram
of the model.
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Theorem 1.1. There exists a continuous increasing function hc : [0,∞) −→
[0,∞), hc(0) = 0, such that

L = {(λ, h) : h < hc(λ)} and D = {(λ, h) : h ≥ hc(λ)}. (1.6)

Moreover

h(λ) := 1

4λ/3
log M (−4λ/3) ≤ hc(λ) ≤ 1

2λ
log M (−2λ) =: h(λ). (1.7)

This implies that the slope at the origin belongs to [2/3, 1], in the sense that the
inferior limit of hc(λ)/λ as λ ↘ 0 is not smaller than 2/3 and the superior limit
is not larger than 1.

Remark 1.2. In (15) it is proven that the limit of hc(λ)/λ as λ ↘ 0 does exist and
it is independent of the distribution of ω1, at least when ω1 is a bounded symmetric
random variable or when ω1 is a standard Gaussian variable (15). This universal
character of the slope at the origin makes this quantity very interesting.

Theorem 1.1 is a mild generalization of the results proven in (5) and (3): the
extension lies in the fact that ω1 is not necessarily symmetric and a proof of it
requires minimal changes with respect to the arguments in (3). The lower bound in
(1.7) is actually proven explicitly in Appendix B (see also Sect. 3), but we stress
that we present this proof because it is a new one and because it gives some insight
on the computational results. For what follows we set

h(m)(λ) = 1

2mλ
log M(−2mλ), (1.8)

for m > 0. Observe that the curves h(·) and h(·) defined in (1.7) correspond
respectively to m = 2/3 and m = 1, and that d

dλ
h(m)(λ)|λ=0 = m.

Remark 1.3. Notice that one can write

dPλ,h
N ,ω

dP
(S) = 1

Zλ,h
N ,ω

exp

(
−2λ

N∑
n=1

(ωn + h)�n

)
, (1.9)

with �n = (1 − sign(Sn))/2 and Z N ,ω := Zλ,h
N ,ω a new partition function which

coincides with Z̃ N ,ω exp (−λ
∑N

n=1(ωn + h)) and therefore we have

F(λ, h) := lim
N→∞

1

N
log Z N ,ω = f (λ, h) − λh. (1.10)

This limit of course has to be interpreted in the P( dω)–a.s. sense. We stress that,
even if equivalent to Z̃ N ,ω exp(−λhN ) in the Laplace asymptotic sense, Z N ,ω turns
out to be substantially more useful. This had been already realized in (5), but for
our results looking at Z N ,ω, rather than Z̃ N ,ω, is even more essential. Moreover
from now on F(λ, h), rather than f (λ, h), will be for us the free energy.
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We will use repeatedly also the partition function associated to the model
pinned at the right endpoint:

Zλ,h
N ,ω(x) := E

[
exp

(
−2λ

N∑
n=1

(ωn + h) �n

)
; SN = x

]
. (1.11)

It is worth recalling that one can substitute Zλ,h
N ,ω with Zλ,h

N ,ω(x), any fixed even x
(recall that N ∈ 2N), in 1.10 and the limit is unchanged, see e.g. (5) or (14).

1.3. A Random Walk Excursions Viewpoint

We present here a different viewpoint on the process: this turns out to be
useful for the intuition and it will be used in some technical steps.

We call η the first return time of the walk S to 0, that is η := inf{n ≥ 1 : Sn =
0}, and set K (2n) := P(η = 2n) for n ∈ N. It is well known that K (·) is decreasing
on the even natural numbers and

lim
x∈2N,x→∞

x3/2 K (x) =
√

2/π, (1.12)

see e.g. [12, Ch. 3]. Let the IID sequence {η j } j=1,2,... denote the inter–arrival
times at 0 for S, and we set τk := η1 + . . . + ηk , τ0 = 0. If we introduce also
	N = max{ j ∈ N ∪ {0} : τ j ≤ N }, then by exploiting the up–down symmetry of
the excursions of S we directly obtain

Z N ,ω(0) = E

 	N∏
j=1

ϕ

(
λ

τ j∑
n=τ j−1+1

ωn + λhη j

)
; τ	N = N


=

N∑
l=0

∑
x0 ,...,xl ∈2N

0=:x0<...<xl :=N

l∏
i=1

ϕ

(
λ

xi∑
n=xi−1+1

ωn + λh(xi − xi−1)

)
K (xi − xi−1) , (1.13)

with ϕ(t) := (1 + exp(−2t))/2. Of course the formula for Z N ,ω is just slightly
different.

Formula 1.13 reflects the fact that what really matters for the copolymer are
the return times to the interface.

1.4. Known and Conjectured Path Properties

The question of whether splitting the phase diagram into the regions L and
D does correspond to really different path behaviors has a positive answer, at least
if we do not consider the critical case, that is if we consider the path behavior for
(λ, h) ∈ L and for (λ, h) in the interior of D. However, while the localized regime
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is rather well understood, the delocalized one remains somewhat elusive (we take
up this point again in Sect. 4.1). More precisely:

• For (λ, h) ∈ L one knows that the polymer is going to stay very close
to the interface, essentially at distance O(1) and the polymer becomes
positive recurrent for N → ∞. Due to the disordered distribution of the
charges, even the most elementary results in this direction require a careful
formulation and we prefer to refer to (1,2) and (24).

• For (λ, h) in the interior of D one can prove by large deviation arguments
that there are o(N ) visits to the unfavorable solvent and by more sophisti-
cate arguments that these visits are actually O(log N ) (15). These results are
in sharp contrast with what happens in L and in this sense they are satis-
factory. However they give at the same time still a weak information on the
paths, above all if compared to what is available for non disordered models,
see e.g. (21,11,8) and references therein, namely Brownian scaling, which
in turn is a consequence of the fact that all the visits in the unfavorable
solvent happen very close to the boundary points, that is the origin, under
the measure Pλ,h

N ,ω. In non disordered models one can in fact prove that
the polymer becomes transient and that it visits the unfavorable solvent,
or any point below a fixed level, only a finite number of times. Recently
it has been shown (15) that such a result cannot hold as stated, at least for
h < h(λ), for the disordered copolymer. However the results in (15) leave
open the possibility of Brownian scaling in the whole delocalized region.

1.5. Outline of the Results

Formula (1.7) leaves an important gap, that hides the only partial understand-
ing of the nature of this delocalization/localization transition. Our purpose is to go
toward filling this gap: our results are both of theoretical and numerical nature. At
the same time we address the delocalization issues raised in Section 1.4, which are
intimately related with the precise asymptotic behavior of Z N ,ω and of Z N ,ω(0).
More precisely:

(1) In Section 2 we present a statistical test with explicit error bounds, see
Proposition 2.1, based on super–additivity and concentration inequalities,
to state that a point (λ, h) is localized. We apply this test to show that, with
a very low level of error, the lower bound h = h(λ) defined in (1.7) does
not coincide with the critical line.

(2) In Section 3 we give the outline of a new proof of the main result in (3).
The details of the proof are in Appendix B and we point out in particular
Proposition B.2, that gives a necessary and sufficient condition for localiza-
tion. This viewpoint on the transition, derived from [15, Section 4], helps
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substantially in interpreting the irregularities in the behavior of {Z N ,ω}N

as N ↗ ∞.
(3) In Section 4 we pick up the conjecture of Brownian scaling in the delo-

calized regime both in the intent of testing it and in trying to asses with
reasonable confidence that (λ, h) is in the interior of D. In particular, we
present quantitative evidences in favor of the fact that the upper bound
h = h(λ) defined in 1.7 is strictly greater than the critical line. We stress
that this is a very delicate issue, since delocalization, unlike localization,
does not appear to be reducible to a finite volume issue.

(4) Finally, in Section 5, we report the results of a numerical attempt to de-
termine the critical curve. While this issue has to be treated with care,
mostly for the reasons raised in point 4 above, we observe a surprising
phenomenon: the critical curve appears to be very close to h(m)(·) for a
suitable value of m. By the universality result proven in (15), building on the
free energy Brownian scaling result proven in (5), the slope at the origin of
hc(·) does not depend on the law of ω. Therefore if really h(m)(·) = hc(·),
since the slope at the origin of h(m)(·) is m, m is the universal constant we
are looking for. We do not believe that the numerical evidence allows to
make a clear cut statement, but what we observe is compatible with such a
possibility.

We point out that our numerical results are based on a numerical computation
of the partition function Z N ,ω, exploiting the standard transfer–matrix approach
(this item is discussed in more details in Appendix A).

1.6. A Quick Overview of the Literature

The copolymer in the proximity of an interface problem has a long literature,
but possibly the first article that attracted the attention of mathematicians is (16).
Here we are going to focus on very specific issues and the most interesting for
our purposes is that in the physical literature both the conjecture that h(·) = hc(·)
(cf. (20) and (26)) and that h(·) = hc(·) (cf. (27)) are set forth. The approaches are
non rigorous, mostly based on replica computations, with the exception of (20)

whose method is the real space renormalization technique for one–dimensional
disordered systems first proposed in (13) in the context of quantum Ising model with
transverse field and then applied with remarkably precise results to random walk
in random environment, see e. g. (17). The result in (3), that h(·) ≤ hc(·), is obtained
by exploiting the path behavior of the copolymer near criticality suggested in (20).
This strategy may by summed up by: the localized polymer close to criticality is
mostly delocalized in the upper half–plane and it keeps in the lower half–plane
only the rare portions with an atypically negative charge. The numerical results
that we set forth in this work are saying that this strategy is not good enough.
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At the opposite end, the result h(·) ≥ hc(·), albeit relatively subtle, is ab-
solutely elementary to prove (5). And such a bound does not depend at all on
the details of the walk: any non trivial null recurrent walk with increments in
{−1, 0,+1} leads to the same upper bound. This suggests that such a bound is
too rough. One can however prove that the standard procedure for obtaining upper
bounds that goes under the name of constrained annealing cannot improve such a
bound (7). This is in any case far from being a proof that h(·) = hc(·), and in fact
the numerics suggest that this is not the case.

In the literature one finds also a large number of numerical works on copoly-
mers, we mention here for example (9,25) and references therein. As far as we have
seen, the attention is often shifted toward different aspects, notably of course the
issue of critical exponents, and the more complex model in which the polymer is
not directed but rather self–avoiding, see (9) and (25) also for some rigorous results
and references in such a direction.

Our work has been led rather by the idea that understanding the precise lo-
cation of the critical curve is a measure of our understanding of the nature of the
transition. Understanding that, in turn, could promote an advance on the mathe-
matical analysis of the copolymer and, more generally, of this kind of disordered
models.

2. A STATISTICAL TEST FOR THE LOCALIZED PHASE

2.1. Checking Localization at Finite Volume

At an intuitive level one is led to believe that, when the copolymer is localized,
it should be possible to detect it by looking at the system before the infinite volume
limit. This intuition is due to the fact that in the localized phase the length of each
excursion is finite, therefore for N much larger that the typical excursion length
one should already observe the localization phenomenon in a quantitative way.
The system being disordered of course does not help, because it is more delicate
to make sense of what typicality means in a non translation invariant set–up.
However the translation invariance can be recovered by averaging and in fact it
turns out to be rather easy to give a precise meaning to the intuitive idea we have
just mentioned. The key word here is super–additivity of the averaged free energy.

In fact by considering only the S trajectories such that S2N = 0 and by
applying the Markov property of S one directly verifies that for any N , M ∈ N

Z2N+2M,ω(0) ≥ Z2N ,ω(0) Z2M,θ2N ω(0), (2.1)

(θω)n = ωn+1, and therefore

{ E log Z2N ,ω(0)}N=1,2,... (2.2)
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is a super–additive sequence, which immediately entails the existence of the limit
of E[log Z2N ,ω(0)]/2N and the fact that this limit coincides with the supremum of
the sequence. Therefore from the existence of the quenched free energy we have
that

F(λ, h) = sup
N

1

2N
E log Z2N ,ω(0) . (2.3)

In a more suggestive way one may say that:

(λ, h) ∈ L ⇐⇒ there existsN ∈ N such that E log Z2N ,ω(0) > 0 . (2.4)

The price one pays for working with a disordered system is precisely in taking the
P–expectation and from the numerical viewpoint it is an heavy price: even with
the most positive attitude one cannot expect to have access to E log Z2N ,ω(0) by
direct numerical computation for N above 10. Of course in principle small values
of N may suffice (and they do in some cases, see Remark 2.1), but they do not
suffice to tackle the specific issue we are interested in. We elaborate at length on
this interesting issue in Section 2.4.

Remark 2.1. An elementary application of the localization criterion (2.4) is
obtained for N = 1: (λ, h) ∈ L if

E

[
log

(
1

2
+ 1

2
exp (−2λ (ω1 + ω2 + 2h))

)]
> 0. (2.5)

In the case P(ω1 = ±1) = 1/2 from 2.5 we obtain that for λ sufficiently large
hc(λ) > 1 − c/λ, with c = (1/4) log(2 exp(4) − 1) ≈ 1.17. From h(·) we obtain
the same type of bound, with c = (3/4) log 2 ≈ 0.52. This may raise some hope
that for λ large an explicit, possibly computer assisted, computation for small
values of N of E log Z2N ,ω(0) could lead to new estimates. This is not the case, as
we show in Section 2.4.

2.2. Testing by Using Concentration

In order to decide whether E log Z2N ,ω(0) > 0 we resort to a Montecarlo
evaluation of E log Z2N ,ω(0) that can be cast into a statistical test with explicit
error bound by means of concentration of measure ideas. This procedure is ab-
solutely general, but we have to choose a set–up for the computations and we
take the simplest: P(ω1 = +1) = P(ω1 = −1) = 1/2. The reason for this choice
is twofold:

• if ω1 is a bounded random variable, a Gaussian concentration inequality
holds and if ω is symmetric and it takes only two values then one can
improve on the explicit constant in such an inequality. This speeds up in a
non negligible way the computations;



808 Caravenna et al.

• generating true randomness is out of reach, but playing head and tail is
certainly the most elementary case in such a far reaching task (the random
numbers issue is briefly discussed in Appendix A too).

A third reason to restrict testing to the Bernoulli case is explained at the end
of the caption of Table II.

We start the testing procedure by stating the null hypothesis:

H0 : E log Z2N ,ω(0) ≤ 0. (2.6)

N in H0 can be chosen arbitrarily. We stress that refusing H0 implies
E log Z2N ,ω(0) > 0, which by (2.4) implies localization.

The following concentration inequality for Lipschitz functions holds for the
uniform measure on {−1,+1}N : for every function G N : {−1,+1}N → R such
that |G N (ω) − G N (ω′)| ≤ CLip

√
(
∑N

n=1(ωn − ω′
n)2), where CLip a positive con-

stant and G N (ω) is an abuse of notation for G N (ω1, . . . , ωN ), one has

E[exp(α(G N (ω) − E[G N (ω)]))] ≤ exp
(
α2C2

Lip

)
, (2.7)

for every α. Inequality 2.7 with an extra factor 4 at the exponent can be extracted
from the proof of Theorem 5.9, page 100 in (18). Such an inequality holds for
variables taking values in [−1, 1]: the factor 4 can be removed for the particular
case we are considering (see [18, p. 110–111]). A proof of (2.7) may be found
also in (29). In our case G N (ω) = log Z2N ,ω(0). By applying the Cauchy–Schwarz
inequality one obtains that G N is Lipschitz with CLip = 2λ

√
N . Let us now con-

sider an IID sequence {G(i)
N (ω)}i with G(1)

N (ω) = G N (ω): if H0 holds then we have
that for every n ∈ N, u > 0 and α = un/8λ2 N

P

(
1

n

n∑
i=1

G(i)
N (ω) ≥ u

)
≤ E

[
exp

(α

n
(G N (ω) − E[G N (ω)])

)]n

× exp (−α(u − E[G N (ω)]))

≤ exp

(
4α2λ2 N

n
− αu

)
= exp

(
− u2n

16λ2 N

)
. (2.8)

Let us sum up what we have obtained:

Proposition 2.2. Let us call ûn the average of a sample of n independent realiza-
tions of log Zλ,h

2N ,ω(0). If ûn > 0 then we may refuse H0, and therefore (λ, h) ∈ L,
with a level of error not larger than exp (−û2

nn/16λ2 N ).
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2.3. Numerical Tests

We report in Table I the most straightforward application of Proposition 2.2,
obtained by a numerical computation of log Z N for a sample of n independent
environments ω. We aim at seeing how far above h(·) one can go and still claim
localization, keeping a reasonably small probability of error.

Remark 2.3. One might be tempted to interpolate between the values in Table II,
or possibly to get results for small values of λ in order to extend the result of the
test to the slope of the critical curve in the origin. However the fact that hc(λ) is
strictly increasing does not help much in this direction and the same is true for
the finer result, proven in (4), that hc(λ) can be written as U (λ)/λ, U (·) a convex
function.

2.4. Improving on h(·) is Uniformly Hard

One can get much smaller p–values at little computational cost by choosing h
just above h(λ). As a matter of fact a natural choice is for example h = h(0.67)(λ) >

h(λ), recall 1.8, for a set of values of λ, and this is part of the content of Table II:

in particular E log Zλ,h(0.67)(λ)
2N+,ω (0) > 0 with a probability of error smaller than 10−5

for the values of λ between 0.1 and 1. However we stress that for some of these λ’s
we have a much smaller p–value, see the caption of Table II, and that the content
of this table is much richer and it approaches also the question of whether or not

Table I. According to our numerical computations, the three

pairs (λ, h) are in L and this has been tested with the stated

p–values (or probability/level of error)

λ 0.3 0.6 1
h 0.22 0.41 0.58
p–value 1.5 × 10−6 9.5 × 10−3 1.6 × 10−5

h(λ) 0.195 0.363 0.530
h(λ) 0.286 0.495 0.662
N 300000 500000 160000
n 225000 330000 970000
C.I. 99% 7.179 ± 0.050 9.011 ± 0.045 7.643 ± 0.025

Note. We report the values of h(λ) and h(λ) for reference. Of course in
these tests there is quite a bit of freedom in the choice of n and N : notice
that N enters in the evaluation of the p–value also because a larger
value of N yields a larger value of E log Zλ,h

2N ,ω(0). In the last line we

report standard Gaussian 99% confidence intervals for E log Zλ,h
2N ,ω(0).

Of course the p–value under the Gaussian assumption turns out to be
totally negligible.
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Table II. For a given λ, both E log Zλ,h(0.67)(λ)
2N+,ω (0) > 0 and E log Zλ,h(0.67)(λ)

2N−,ω (0) < 0 with

a probability of error smaller than 10−5 (and in some cases much smaller than

that)

λ 0.05 (*) 0.1 0.2 0.4 0.6 1 2(*) 4(**) 8(**)

N+ 750000 190000 40000 9500 4250 1800 900 800 800
N− 600000 130000 33000 7500 3650 1550 750 700 700

Note. Instead for the two cases marked by a (�) the level of error is rather between 10−2 and 10−3.
For large values of λ, the two cases marked with (��), it becomes computationally expensive to
reach small p–values. However, above λ = 3 one observes that the values of Z2N ,ω(0) essentially
do not depend anymore on the value of λ. This can be interpreted in terms of convergence to a
limit (λ → ∞) model, as it is explained in Remark 2.4. If we then make the hypothesis that this
limit model sharply describes the copolymer along the curve (λ, h(m)(λ)) for λ sufficiently large
and we apply the concentration inequality, then the given values of N+ and N− are tested with
a very small probability of error. Since the details of such a procedure are quite lengthy we do
not report them here. We have constructed (partial) tables also for different laws of ω, notably
ω1 ∼ N (0, 1), and they turned out to yield larger, at times substantially larger, values of N±(λ).

a symbolic computation or some other form of computer assisted argument could
lead to hc(λ) > h(λ) for some λ, and therefore for λ in an interval. Since such an
argument would require N to be small, intuitively the hope resides in large values
of λ, recall also Remark 2.1. It turns out that one needs in any case N larger than
700 in order to observe a localization phenomenon at h(0.67)(λ). We now give some
details on the procedure that leads to Table II.

First and foremost, the concentration argument that leads to Proposition 2.1 is
symmetric and it works for deviations below the mean as well as above. So we can,
in the very same way, test the null hypothesis E log Z2N ,ω(0) > 0 and, possibly,
refuse it if ûn < 0, exactly with the same p–value as in Proposition 2.2. Of course
an important part of Proposition 2.2 was coming from the finite volume localization
condition (2.4): we do not have an analogous statement for delocalization (and
we do not expect that there exists one). But, even if E log Z2N ,ω(0) ≤ 0 does not
imply delocalization, it says at least that it is pointless to try to prove localization
by looking at a system of that size.

In Table II we show two values of the system size N , N+ and N−, for
which, at a given λ, one has that E log Z2N+,ω(0) > 0 and E log Z2N−,ω(0) < 0
with a fixed probability of error (specified in the caption of the Table). It is
then reasonable to guess that the transition from negative to positive values of
E log Z ·,ω(0) happens for N ∈ (N−, N+). There is no reason whatsoever to expect
that E log Z N ,ω(0) should be monotonic in N but according to our numerical result
it is not unreasonable to expect that monotonicity should set in for N large or, at
least, that for N < N− (respectively N > N+) E log Z2N ,ω(0) is definitely negative
(respectively positive).
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Remark 2.4. As pointed out in the caption of Table II, from numerics one
observes a very sharp convergence to a λ independent behavior as λ becomes
large, along the line h = h(m)(λ). This is easily interpreted if one observes that
h(m)(λ) = 1 − ((log 2)/2mλ) + O(exp(−4mλ)) so that

lim
λ→∞

exp

(
−2λ

N∑
n=1

(ωn + h) �n

)
= exp

(
log 2

m

N∑
n=1

�n

)
1{∑N

n=1 �n (1+ωn )=0
}(S).

(2.9)
This corresponds to the model where a positive charge never enters the lower
half-plane and where the energy of a configuration is proportional to the number
of negative charges in the lower half-plane.

3. LOWER BOUND STRATEGIES VERSUS THE TRUE STRATEGY

3.1. An Approach to Lower Bounds on the Critical Curve

In this section we give an outline of a new derivation of the lower bound

h(λ) ≤ hc(λ), (3.1)

with h(λ) defined in (1.7). The complete proof may be found in Appendix B. The
argument takes inspiration from the ideas used in the proof of Proposition 3.1
in (15) and, even if it is essentially the proof of (4) in disguise, in the sense that
the selection of the random walk trajectories that are kept and whose energy
contribution is evaluated does not differ too much (in a word: the strategy of
the polymer is similar), it is however conceptually somewhat different and it will
naturally lead to some considerations on the precise asymptotic behavior of Z N ,ω

in the delocalized phase and even in the localized phase close to criticality.
The first step in our proof of (3.1) is a different way of looking at localization.

For any fixed positive number C we introduce the stopping time (with respect to
the natural filtration of the sequence {ωn}) T C = T C,λ,h(ω) defined by

T C,λ,h(ω) := inf{N ∈ 2N : Zλ,h
N ,ω(0) ≥ C} . (3.2)

The key observation is that if E[T C ] < ∞ for some C > 1, then the poly-
mer is localized. Let us sketch a proof of this fact (for the details, see Proposi-
tion B.1): notice that by the very definition of T C we have ZT C (ω),ω(0) ≥ C . Now
the polymer that is in zero at T C (ω) is equivalent to the original polymer, with
a translated environment ω′ = θT C

ω, and setting T2(ω) := T C (ω′) we easily get
ZT1(ω)+T2(ω),ω(0) ≥ C2 (we have put T1(ω) := T C (ω)). Notice that the new envi-
ronment ω′ is still typical, since T C is a stopping time, so that T2 is independent
of T1 and has the same law. This procedure can be clearly iterated, yielding an
IID sequence {Ti (ω)}i=1,2,... that gives the following lower bound on the partition
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function:

ZT1(ω)+...+Tn (ω),ω(0) ≥ Cn . (3.3)

From this bound one easily obtains that

F(λ, h)
a.s.= lim

n→∞
log ZT1(ω)+...+Tn (ω),ω(0)

T1(ω) + . . . + Tn(ω)
≥ log C

E[T C ]
, (3.4)

where we have applied the strong law of large numbers, and localization follows
since by hypothesis C > 1 and E[T C ] < ∞.

Remark 3.1.
It turns out that also the reciprocal of the claim just proved holds true, that

is the polymer is localized if and only if E[T C ] < ∞, with an arbitrary choice of
C > 1, see Proposition B.2. In fact the case E[T C ] = ∞ may arise in two different
ways:

(1) the variable T C is defective, P[T C = ∞] > 0: in this case with positive
probability {Z N ,ω(0)}N is a bounded sequence, and delocalization follows
immediately;

(2) the variable T C is proper with infinite mean, P[T C = ∞] = 0, E[T C ] =
∞: in this case we can still build a sequence {Ti (ω)}i=1,2,... defined as above
and this time the lower bound (3.3) has subexponential growth. Moreover
it can be shown that in this case the lower bound (3.3) gives the true
free energy, cf. Lemma B.1, which therefore is zero, so that delocalization
follows also in this case.

As a matter of fact, it is highly probable that in the interior of the delocalized
phase Z N ,ω(0) vanishes P( dω)–a.s. when N → ∞ and this would rule out the
scenario (3.1) above, saying that for C > 1 the random variable T C must be either
integrable or defective. We take up again this point in Sections 4 and 5: we feel
that this issue is quite crucial in order to fully understand the delocalized phase of
disordered models.

Remark 3.2.
Dealing directly with T C may be difficult. Notice however that if one finds

a random time (by this we mean simply an integer–valued random variable) T =
T (ω) such that

ZT (ω),ω(0) ≥ C > 1 , with E[T ] < ∞ , (3.5)

then localization follows. This is simply because this implies T C ≤ T and hence
E[T C ] < ∞. Therefore localization is equivalent to the condition log ZT (ω),ω(0) >

0 for an integrable random time T (ω): we would like to stress the analogy between
this and the criterion for localization given in Section 2.1, see 2.4.
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Fig. 2. A graphical representation of Table II. The plot is log–log, and a λ−c behavior is rather evident,
c is about 2.08. This can be nicely interpreted in terms of the coarse graining technique in the proof
of the weak interaction scaling limit of the free energy in (5): from that argument one extracts that
if λ is small the excursions that give a contribution to the free energy have typical length λ−2 and
that in the limit the polymer is just made up by this type of excursions. One therefore expects that
it suffices a system of size N (λ), with limλ↘0 λ2 N (λ) = +∞, to observe localization if m < h′

c(0),
h = h(m)(λ) = mλ(1 + o(1)) and λ is small.

Now we can turn to the core of our proof: we are going to show that for every
(λ, h) with h < h(λ) we can build a random time T = T (ω) that satisfies (3.5).
The construction of T is based on the idea that for h > 0 if localization prevails
is because of rare ω–stretches that invite the polymer to spend time in the lower
half–plane in spite of the action of h.

The strategy we use consists in looking for q–atypical stretches of length at
least M ∈ 2N, where q < −h is the average charge of the stretch. Rephrased a bit
more precisely, we are looking for the smallest n ∈ 2N such that

∑n
i=n−k+1 ωi/k <

q for some even integer k ≥ M . It is well known that such a random variable grows,
in the sense of Laplace, as exp(
(q)M) for M → ∞, where 
(q) is the Cramer
functional


(q) := sup
α∈R

{αq − log M(α)} . (3.6)

One can also show without much effort that the length of such a stretch cannot
be much longer than M . Otherwise stated, this is the familiar statement that the
longest q–atypical sub–stretch of ω1, . . . , ωN is of typical length ∼ log N/
(q).
So T (ω) is for us the end–point of a q–atypical stretch of length approximately
(log T (ω))/
(q): by looking for sufficiently long q–atypical stretches we have
always the freedom to choose T (ω) � 1, in such a way that also log T (ω) � T (ω)
and this is helpful for the estimates. So let us bound ZT (ω),ω from below by
considering only the trajectories of the walk that stay in the upper half–plane up to
the beginning of the q–atypical stretch and that are negative in the stretch, coming
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Fig. 3. Inequality (3.10) comes simply from restricting the evaluation of ZT (ω)+L ,ω to the trajectories
visiting the q–atypical stretch of length 	 and by staying away from the unfavorable solvent after that.

back to zero at step T (ω) (see Fig. 3: the polymer is cut at the first dashed vertical
line). The contribution of these trajectories is easily evaluated: it is approximately(

1

T (ω)3/2

)
exp

(
−2λ(q + h)

log T (ω)


(q)

)
. (3.7)

For such an estimate we have used (1.12) and log T (ω) � T (ω) both in writing
the probability that the first return to zero of the walk is at the beginning of the
q–atypical stretch and in neglecting the probability that the walk is negative inside
the stretch. It is straightforward to see that if

4λ

3
h < −4λ

3
q − 
(q), (3.8)

and if T (ω) is large, then also the quantity in (3.7) is large. We can still optimize
this procedure by choosing q (which must be sufficently negative, i.e. q < −h). By
playing with 3.6 one sees that one can choose q0 ∈ R such that for q = q0 the right–
hand side in (3.8) equals log M(−4λ/3) and if h < log M(−4λ/3)/(4λ/3) = h(λ)
then q0 < −h. This argument therefore is saying that there exists C > 1 such that

ZT (ω),ω(0) ≥ C, (3.9)

for every ω. It only remains to show that E[T ] < ∞: this fact, together with a
detailed proof of the argument just presented can be found in Appendix B.

3.2. Persistence of the Effect of Rare Stretches

As pointed out in the previous section, there is strong evidence that hc(λ) >

h(λ). At this stage Fig. 4 is of particular interest. Notice first of all that in spite of
being substantially above h(·) the copolymer appears to be still localized, see in
particular case A.

The rigorous lower bounds that we are able to prove cannot establish local-
ization in the region we are considering. All the same, notice that if one does not
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Fig. 4. For λ = 0.6 (h(0.6) � 0.36 and h(0.6) � 0.49) , the behavior of log Z2N ,ω for h = 0.42 (A),
0.43 (C,D) and 0.44 (B). The sequence of charges is the same in all the cases. In case A, the polymer
is localized with free energy approximately 3 · 10−6: the linear growth is quite clear, but a closer
look shows sudden jumps, which correspond to atypically negative stretches of charges. Getting closer
to the critical point, case C, the growth is still rather evident, but it is clearly the result of sudden
growths followed by slow decays (approximately polynomial with exponent −1/2). Case B suggests
delocalization: a closer analysis reveals a decay of the type N−1/2, but sharp deviations are clearly
visible and these deviations are in reality much larger, since in the graph we have plotted just one point
every 10000. Case D is the zoom of the rectangle in the left corner of C. The similarity between B and
D make clear that claiming delocalization looking at the behaviour of the partition function is difficult.

cut the polymer at T (ω), as in the argument above, but at T (ω) + L , a lower bound
of the following type

ZT (ω)+L ,ω

roughly≥ const.
1

T (ω)3/2
exp

(
−2λ(q + h)

log T (ω)


(q)

)
1

L1/2
, (3.10)
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is easily established. Of course we are being imprecise, but we just want to convey
the idea, see also Fig. 3, that after passing through an atypically negative stretch
of environment (q > 0), the effect of this stretch decays at most like L−1/2, that is
the probability that a walk stays positive for a time L .

At this point we stress that the argument outlined in Section 3.1 and re–used
for (3.10) may be very well applied to h > h(λ), except that this time it does not
suffice for (3.9). But it yields nevertheless that for h ∈ (h(λ), h(λ)) the statement
Z N ,ω ∼ N−1/2, something a priori expected (for example (6)) in the delocalized
regime and true for non disordered systems, is violated. More precisely, one can
find a sequence of random times {τ j } j , lim j τ j = ∞ such that Zτ j ,ω ≥ τ j

−1/2+a ,
a = a(λ, h) > 0 (see Proposition 4.1 in (15)). These random times are constructed
exactly by looking for q–atypical stretches as above and one can appreciate such
an irregular decay for example in case B of Fig. 4, and this in spite of the fact that
the data have been strongly coarse grained.

Therefore the lower bound (3.10), both in the localized and in the delocalized
regime, yields the following picture: the lower bound we found on Z N ,ω grows
suddenly in correspondence of atypical stretches and after that it decays with an
exponent 1/2, up to another atypical stretch. This matches Fig. 4, at least on a
qualitative level, see the caption of the figure.

Of course it very natural to ask what is missing, on a theoretical level, to
the strategy that we are adopting for the lower bound to match the quantitative
discrepancy. Moreover, since the ω sequence is of course known, one may look at
the atypical stretches, this time defined by the points of sudden growth of Z N ,ω,
and look for the specificity of such stretches. Up to now we have not been able to
extract from this analysis definite answers.

4. THE DELOCALIZED PHASE: A PATH ANALYSIS

Let us start with a qualitative observation: if we set the parameters (λ, h) of the
copolymer to (λ, h(m)(λ)) with m = 0.9, then the observed behavior of {Zλ,h

N ,ω(0)}N

–suitably averaged over blocks in order to eliminate local fluctuations– is somewhat
close to (const)/N 3/2. This is true for all the numerically accessible values of N
(up to N ∼ 108), at once for a number of values of λ and for a great number of
typical environments ω. Of course this is suggesting that for m = 0.9 the curve
h(m)(λ) lies in the delocalized region, but it is not easy to convert this qualitative
observation into a precise statement, because we do not have a rigorous finite–
volume criterion to state that a point (λ, h) belongs to the delocalized phase (the
contrast with the localized phase, see (2.4), is evident). In other words, we cannot
exclude the possibility that the system is still localized but with a characteristic
size much larger than the one we are observing.

Nevertheless, the aim of this section is to give an empirical criterion, based
on an analysis of the path behavior of the copolymer, that will allow us to provide
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some more quantitative argument in favor of the fact that the curve h(m)(λ) lies in
the delocalized region even for values of m < 1. This of course would entail that
the upper bound h(λ) defined in (1.7) is not strict.

4.1. Known and Expected Path Behavior

We want to look at the whole profile {Zλ,h
N ,ωr (x)}x∈Z rather than only at

Zλ,h
N ,ωr (0), where by ωr we mean the environment ω in the backward direction,

that is (ωr )n := ωN+1−n (the reason for this choice is explained in Remark 4.1
below). The link with the path behavior of the copolymer, namely the law of SN

under the polymer measure Pλ,h
N ,ωr , is given by

Zλ,h
N ,ωr (x)

Zλ,h
N ,ωr

= Pλ,h
N ,ωr (SN = x) . (4.1)

As already remarked in the introduction, although the localized and delo-
calized phases have been defined in terms of free energy they do correspond to
sharply different path behaviors. In the localized phase it is known (2,24) that the
laws of SN under Pλ,h

N ,ωr are tight, which means that the polymer is essentially at
O(1) distance from the x–axis. The situation is completely different in the (inte-
rior of the) delocalized phase, where one expects that SN = O(

√
N ): in fact the

conjectured path behavior (motivated by the analogy with the known results for
non disordered models, see in particular (11,21) and (8)) should be weak conver-
gence under diffusive scaling to the Brownian meander process (that is Brownian
motion conditioned to stay positive on the interval [0, 1], see (23)). Therefore in the
(interior of the) delocalized phase the law of SN /

√
N under Pλ,h

N ,ωr should converge
weakly to the corresponding marginal of the Brownian meander, whose law has
density x exp (−x2/2)1(x≥0).

We stress however that for the delocalized regime the rigorous results that are
available are more meager: essentially the only known P( dω)–a.s. result is that for
any L > 0

lim
N→∞

Eλ,h
N ,ωr

[
1

N

N∑
n=1

1(Sn≥L)

]
= 1 P( dω)−a.s. , (4.2)

that is the polymer spends almost all the time above any prefixed level. More
precise results have been derived for the path behavior of the polymer under the
quenched averaged measure EEλ,h

N ,ω[ · ] : these results go in the direction of proving
the conjectured scaling limit, but they still do not suffice (we refer to (15) for more
details and also for a discussion on what is still missing).

In spite of the lack of precise rigorous results, the analysis we are going to
describe is carried out under the hypothesis that, in the interior of the delocalized
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phase, the scaling limit towards Brownian meander holds true (as it will be seen,
the numerical results provide a sort of a posteriori confirmation of this hypothesis).

Remark 4.1. From a certain point of view attaching the environment backwards
does not change too much the model: for example it is easy to check that if one
replaces ω by ωr in (1.3), the limit still exists P( dω)–a.s. and in L1( dP). Therefore
the free energy is the same, because {ωr

n}1≤n≤N has the same law as {ωn}1≤n≤N ,
for any fixed N .

However, if one focuses on the law of SN as a function of N for a fixed
environment ω, the behavior reveals to be much smoother under Pλ,h

N ,ωr than under

Pλ,h
N ,ω. For instance, under the original polymer measure Pλ,h

N ,ω it is no more true
that in the localized region the laws of SN are tight (it is true only most of the time,
see (14) for details). The reason for this fact is to be sought in the presence of long
atypical stretches in every typical ω (this fact has been somewhat quantified in [15,
Section 4] and it is at the heart of the approach in Section 3) that are encountered
along the copolymer as N becomes larger. Of course the effect of these stretches
is very much damped with the backward environment.

A similar and opposite phenomenon takes place also in the delocalized phase.
In fancier words, we could say that for fixed ω and as N increases, the way
SN approaches its limiting behavior is faster when the environment is attached
backwards: it is for this reason that we have chosen to work with Pλ,h

N ,ωr .

4.2. Observed Path Behavior: A Numerical Analysis

In view of the above considerations, we choose as a measure of the delocal-
ization of the polymer the 	1 distance �λ,h

N (ω) between the numerically computed
profile for a polymer of size 2N under Pλ,h

2N ,ωr , and the conjectured asymptotic
delocalized profile:

�λ,h
N (ω) :=

∑
x∈2Z

∣∣∣∣∣ Zλ,h
N ,ωr (x)

Zλ,h
N ,ωr

− 1√
2N

ϕ+
(

x√
2N

)∣∣∣∣∣ , ϕ+(x) := x e−x2/21(x≥0) .

(4.3)
Loosely speaking, when the parameters (λ, h) are in the interior of the the delo-
calized region we expect �N to decrease to 0 as N increases, while this certainly
will not happen if we are in the localized phase.

The analysis has been carried out at λ = 0.6: we recall that the lower and
upper bound of (1.7) give respectively h(0.6) � 0.36 and h(0.6) � 0.49, while the
lower bound we derived with our test for localization is h = 0.41, see Table I.
However, as observed in Section 3, Fig. 4, there is numerical evidence that h =
0.43 is still localized, and for this reason we have analyzed the values of h =
0.44, 0.45, 0.46, 0.47 (see below for an analysis on smaller values of h).
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For each couple (λ, h) we have computed �λ,h
N (ω) for the sizes N = a × 106

with a = 1, 2, 5, 10 and for 500 independent environments. Of course some type
of statistical analysis must be performed on the data in order to decide whether
there is a decay of � or not. The most direct strategy would be to look at the
sample mean of a family of IID variables distributed like �N (ω), but it turns out
that the fluctuations are too big to get reasonable confidence intervals for this
quantity (in other words, the sample variance does not decrease fast enough),
at least for the numerically accessible sample sizes. A more careful analysis
shows that the variance is essentially due to a very small fraction of data that
have large deviations from the mean, while the most of the data mass is quite
concentrated.

Remark 4.2. It is actually interesting to observe that the rare samples that affect
the sample variances are in reality very close to meanders anyway, only with a
smaller variance. This is the signature of the presence of atypical pinning stretches
in the ω–sequence close to the boundary. A fine analysis of this aspect would lead
us too far and it is left for future investigation.

We have therefore chosen to focus on the sample median rather than on the
sample mean. Table III contains the results of the analysis (see also Fig. 5 for
a graphical representation): for each value of h we have reported the standard
95% confidence interval for the sample median (see Remark 4.3 below for details)
for the four different values of N analyzed. While for h = 0.44 the situation is
not clear, we see that for the values of h greater than 0.45 there are quantitative
evidences for a decrease in �N : this leads us to the conjecture that the points (λ, h)
with λ = 0.6 and h ≥ 0.45 (equivalently, the points (λ, h(m)(λ)) with m ≥ 0.876)
lie in the delocalized region.

As already remarked, these numerical observations cannot rule out the pos-
sibility that the system is indeed localized, but the system size is too small to see
it. For instance, we have seen that there are evidences for h = 0.43 to be local-
ized (see case C of Fig. 4). In any case, the exponential increasing of Z N (0) is
detectable only at sizes of order∼ 108, while for smaller system sizes (up to∼ 107)

Table III. The table contains the standard 95% confidence interval for the median

of a sample {�λ,h
N (ω)}ω of size 500, where λ = 0.6 and h, N take the different values

reported in the table. For the values of h ≥ 0.45 the decreasing behavior of �N is quite

evident (the confidence intervals do not overlap), see also Fig. 5

h\N (×106) 1 2 5 10

0.44 [.0603, .0729] [.0574, .0682] [.0572, .0689] [.0570, .0695]
0.45 [.0258, .0286] [.0207, .0232] [.0170, .0190] [.0149, .0171]
0.46 [.0140, .0154] [.0108, .0116] [.00792, .00869] [.00647, .00731]
0.47 [.00905, .00963] [.00676, .00711] [.00475, .00508] [.00364, .00398]
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Fig. 5. Graphical representation of the data of Tables III (on the right) and 4 (on the left). The plotted
points are the sample medians against the sample size, the error bars correspond to the confidence
intervals given in Tables III and IV.

the qualitative observed behavior of Z N (0) is rather closer to (const)/N 3/2, thus
apparently suggesting delocalization (see case D of Fig. 4).

For this reason it is interesting to look at �0.6, h
N for h = 0.42, 0.43 and for

N � 108. For definiteness we have chosen N = a × 106 with a = 1, 2, 5, 10,
performing the computations for 3000 independent environments: the results are
reported in Table IV (see also Fig. 5). As one can see, this time there are clear
evidences for an increasing behavior of �N . On the one hand this fact gives some
more confidence on the data of Table III, on the other hand it suggests that looking
at {�N }N is a more reliable criterion for detecting (de)localization than looking at
{Z N (0)}N .

Remark 4.3. A confidence interval for the sample median can be obtained in
the following general way (the steps below are performed under the assumption
that the median is unique, which is, strictly speaking, not true in our case, but it
will be clear that a finer analysis would not change the outcome). Let {Yk}1≤k≤n

Table IV. The table contains the standard 95% confidence interval for

the median of a sample {�λ,h
N (ω)}ω of size 3000, where λ = 0.6 and h, N

take the values reported in the table. For both values of h an increasing

behavior of �N clearly emerges, see also Fig. 5 for a graphical represen-

tation

h\N (×105) 1 2 5 10

0.42 [.351, 0.382] [.480, 0.517] [.751, 0.794] [1.01, 1.06]
0.43 [.143, 0.155] [.165, 0.180] [.197, 0.215] [.236, 0.264]
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denote a sample of size n, that is the variables {Yk}k are independent with a
common distribution, whose median we denote by ξ1/2: P(Y1 ≤ ξ1/2) = 1/2. Then
the variable

Nn := #{i ≤ n : Yi ≤ ξ1/2} (4.4)

has a binomial distribution Nn ∼ B(n, 1/2) and when n is large (for us it will be at
least 500) we can approximate Nn/n ≈ 1/2 + Z/(2

√
n), where Z ∼ N (0, 1) is a

standard gaussian. Let us denote the sample quantiles by �q , defined for q ∈ (0, 1)
by

#{i ≤ n : Yi ≤ �q} = �qn� . (4.5)

If we set a := |�−1(0.025)| (� being the standard gaussian distribution function)
then the random interval [

� 1
2 − a

2
√

n
, � 1

2 + a
2
√

n

]
(4.6)

is a 95% confidence interval for ξ1/2, indeed

0.95 = P(Z ∈ [−a, a] ) = P

(
1

2
+ 1

2
√

n
Z ∈

[
1

2
− a

2
√

n
,

1

2
+ a

2
√

n

])
≈ P

(Nn

n
∈

[
1

2
− a

2
√

n
,

1

2
+ a

2
√

n

])
= P

(
� 1

2 − a
2
√

n
≤ ξ1/2 ≤ � 1

2 + a
2
√

n

)
.

(4.7)

5. AN EMPIRICAL OBSERVATION ON THE CRITICAL CURVE

The key point of this section is that, from a numerical viewpoint, hc(·) seems
very close to h(m)(·), for a suitable value of m. Of course any kind of statement
in this direction requires first of all a procedure to estimate hc(·) and we explain
this first.

Our analysis is based on the following conjecture:

(λ, h) ∈ D◦ =⇒ lim
N→∞

Zλ,h
2N ,ω(0) = 0, P ( dω) − a.s. (5.1)

The arguments in Section 3 (and in the Appendix) suggest the validity of such a
conjecture, which is comforted by the numerical observation. Since, if (λ, h) ∈ L,
Zλ,h

2N ,ω(0) diverges (exponentially fast) P( dω)–almost surely and since Zλ,h
2N ,ω(0)

is decreasing in h, we define ĥN ,ω(λ) as the only h that solves Zλ,h
2N ,ω(0) = 1. We

expect that ĥN ,ω(λ) converges to hc(λ) as N tends to infinity, for typical ω’s. Of
course setting the threshold to the value 1 is rather arbitrary, but it is somewhat
suggested by (2.4) and by the idea behind the proof of (3.1) (Proposition B.2 and
equation (3.2)).
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Fig. 6. On the left the case of binary symmetric ω1 and on the right the case of ω1 ∼ N (0, 1), boths for
N = 3.2 · 107. The small circles represent the computed values: the errors on ĥN ,ω(λ) are negligible
and the plotted points are at the centers of the circles. The continuous line is instead the curve h(m)(·).
In the binary case m = 0.841 and it has been chosen by solving h(m)(4) = ĥN ,ω(4). In the Gaussian
case m = 0.802, the maximum of ĥN ,ω(λ)/λ for the plotted values of λ(>0). The rather different
values of m̂ N ,ω may be somewhat understood both by considering that these two curves have been
obtained for a fixed realization of ω and by taking into account the remark at the end of the caption
of Table II: it appears that for Gaussian charges one needs longer systems in order to get closer to the
values of m observed in the binary case (in particular: for the prolongation, with the same random
number generator, of the Gaussian ω sample used here up to N = 5 · 107 one obtains m̂ N ,ω = 0.812).

What we have observed numerically, see Figures 6 and 7, may be summed
up by the statement

there exists m such that ĥN ,ω(λ) ≈ h(m)(λ). (5.2)

Practically this means that ĥN ,ω(λ), for a set of λ ranging from 0.05 to 4, may
be fitted with remarkable precision by the one parameter family of functions
{h(m)(·)}m . The fitting value of m =: m̂ N ,ω does depend on N and it is essentially
increasing. This is of course expected since localization requires a sufficiently
large system (recall in particular Table II and Fig. 2–see the caption of Fig. 6
for the fitting criterion). We stress that we are presenting results that have been
obtained for one fixed sequence of ω: based on what we have observed for example
in Section 2.1 for different values of λ one does expect that for smaller values of
λ one should use larger values of N , but changing N corresponds to selecting a
longer, or shorter, stretch of ω, that is a different sequence of charges and this may
have a rather strong effect on the value of m̂ N ,ω. Moreover there is the problem of
deciding which λ-dependence to choose. This may explain the deviations from 5.2
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Fig. 7. Relative errors rN ,ω(λ) :=
(

h(m)(λ) − ĥN ,ω(λ)
)

/ĥN ,ω(λ), for the value m = m̂ N ,ω explained

in the caption of Fig. 6 and for the cases of N = 2.5 · 105 (× dots), and N = 3.2 · 107 (+ dots). Notice
that in the binary case the error is more important for small values of λ (recall Table II and Fig. 2).
Instead for the Gaussian case there is a deviation both for small and large values of λ: the deviation for
large values is due to the saturation effect explained in the text. Given the fact that hsat, cf. 5.3, behaves
almost surely and to leading order for N → ∞ as

√
log N one understand why the slow disappearing

of the saturation effect has to be expected. In both graphs the dotted line above the axis is at level 0.01.
The fitted values for m̂ N ,ω , N = 2.5 · 105, are 0.821 in the binary case and 0.778 in the Gaussian case.

that are observed for small values of λ, but these are in any case rather moderate
(see Fig. 7).

A source of stronger (and unavoidable) deviations arises in the cases of
unbounded charges: of course if

h ≥ hsat := max
n∈{1,...,N }

(−(ω2n−1 + ω2n)/2) , (5.3)

then Zλ,h
2N ,ω(0) < 1, regardless of the value of λ. Moreover it is immediate to

verify that limλ→∞ Zλ,h
2N ,ω(0) = +∞ for h < hsat and therefore ĥN ,ω(λ) ↗ hsat as

λ ↗ ∞. We refer to the captions of Fig. 7 for more on this saturation effect.
We have tried also alternative definitions of ĥN ,ω(λ), namely:

(1) the value of h such that Zλ,h
2N ,ω = 1 (or a different fixed value);

(2) the value of h such that the 	1 distance between the distribution of the
endpoint and the distribution of the meander, cf. Section 4, is smaller than
a fixed threshold, for example 0.05.

What we have observed is that (5.2) still holds. What is not independent of
the criterion is m̂ N ,ω. Of course believing deeply in (5.2) entails the expectation
that m̂ N ,ω converges to the non random quantity h′

c(0). The results reported in
this section suggest a value of h′

c(0) larger than 0.83 and the cases presented in
Section 4 suggest that it should be smaller than 0.86.
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APPENDIX A. THE ALGORITHM FOR COMPUTING ZN,ω

We are going to briefly illustrate the algorithm we used in the numerical
computation of the partition function Z N = Zλ,h

N ,ω. We recall its definition (see
equation (1.1)):

Z N = E

[
exp

(
−2λ

N∑
n=1

(ωn + h)�n

)]
, (A.1)

where �n := (1 − sign(Sn))/2 and the convention for sign(0) described in the
introduction.

Observe that a direct computation of Z N from (A.1) would require to sum
the contributions of 2N random walk trajectories, making the problem numeri-
cally intractable. However, here we can make profitably use of the additivity of
our Hamiltonian: loosely speaking, if we join together two (finite) random walk
segments, the energy of the resulting path is the sum of the energies of the building
segments.

We can exploit this fact to derive a simple recurrence relation for the sequence
of functions

{
ZM (y) := Z2M (2y), y ∈ Z

}
M∈N

, where Z N (x) = Zλ,h
N ,ω(x), the latter

defined in (1.11), and we recall that we work with even values of N . Conditioning
on S2M and using the Markov property one easily finds

ZM+1(y) =


1
4ZM (y + 1) + 1

2ZM (y) + 1
4ZM (y − 1) y > 0

1
4 [ZM (1) + ZM (0)] + 1

4αM [ZM (0) + ZM (−1)] y = 0

αM [ 1
4ZM (y + 1) + 1

2ZM (y) + 1
4ZM (y − 1)] y < 0

, (A.2)

where we have put αM := exp (−2λ (ω2M+1 + ω2M+2 + 2h)).
From equation (A.2) and from the trivial observation that ZM (y) = 0 for

|y| > M , it follows that {ZM+1(y), y ∈ Z} can be obtained from {ZM (y), y ∈ Z}
with O(M) computations. This means that we can compute Z N in O(N 2) steps.4

We point out that sometimes one is satisfied with lower bounds on Z N , for
instance in the statistical text for localization described in Section 2.1 In this case
the algorithm can be further speeded up by restricting the computation to a suitable
set of random walk trajectories. In fact when the system size is N the polymer
is at most at distance O(

√
N ) (we recall the discussion in Section 4 on the path

behavior), hence a natural choice to get a lower bound on Z N is to only take into

4 The algorithm just described can be implemented in a standard way: the code we used,
written in C, is available on the web page: http://www.proba.jussieu.fr/pageperso/

giacomin/C/prog.html. Graphic representations and standard statistical procedures have been
performed with R (28).
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account the contribution coming from those random walk paths {sn}n∈N for which

−A
√

n ≤ sn ≤ B
√

n for n ≥ N0 , (A.3)

where A, B, N0 are positive constants. Observe that this is easily implemented
in the algorithm described above: it suffices to apply relation (A.2) only for
y ∈ [−A

√
M, B

√
M], while setting ZM+1(y) = 0 for the other values of y. In

this way the number of computations needed to obtain Z N is reduced to O(N 3/2).
The specific values of A, B, N0 we used in our numerical computations are

3, 8, 1000, and we would like to stress that the lower bound on Z N we got coincides
up to the 8th decimal digit with the true value obtained applying the complete
algorithm.

A final important remark is that for the results we have reported we have used
the Mersenne–Twister (19) pseudo–random number generator. However we have
also tried other pseudo–random number generators and true randomness from
www.random.org: the results appear not to depend on the generator.

APPENDIX B. PROOF OF THE LOWER BOUND ON hc

We are going to give a detailed proof of the lower bound (3.1) on the critical
curve, together with some related result. We stress that this appendix can be made
substantially lighter if one is interested only in the if part of Proposition B.1. In
this case the first part of this appendix is already contained in the first part of
Section 3.1, up to (3.4), and it suffices to look at Section 5.

We recall that Zλ,h
N ,ω(0) is the partition function corresponding to the polymer

pinned at its right endpoint, see (1.11), and T C = T C (ω) is the first N for which
Z N ,ω(0) ≥ C , see (3.2). In particular, for all ω such that T C (ω) < ∞ we have

Zλ,h
T C (ω),ω(0) ≥ C . (B.1)

We will also denote by Fn := σ (ω1, . . . , ωn) the natural filtration of the sequence
{ωn}n∈N.

B.1. A Different Look at (de)Localization

We want to show that (de)localization can be read from T C . We introduce
some notation: given an increasing, 2N–valued sequence {ti }i∈N, we set t0 := 0
and ζN := max{k : tk ≤ N }. Then we define

Ẑ N ,ω(0) = Ẑ {ti },λ,h
N ,ω (0) : = E

[
e−2λ

∑N
n=1(ωn+h)�n ; St1 = 0, . . . , StζN

= 0, SN = 0
]

=
ζN −1∏
i=0

Zλ,h
ti+1−ti ,θ ti ω

(0) · Zλ,h
N−tζN (ω),θ

tζN ω
(0) , (B.2)
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and we recall that θ denotes the translation on the environment. One sees imme-
diately that Ẑ N ,ω(0) ≤ Z N ,ω(0). We first establish a preliminary result.

Lemma B.1. If the sequence {ti }i is such that ζN /N → 0 as N → ∞, then

lim
N→∞

1

N
log Ẑ {ti },λ,h

N ,ω (0) = F(λ, h) , (B.3)

both P( dω)–a.s. and in L1(P).

Proof: By definition we have Z N ,ω(0) ≥ Ẑ N ,ω(0). On the other hand, we are
going to show that

Zλ,h
N ,ω(0) ≤ 4ζN A2ζN

(
ζN∏

i=1

(ti − ti−1) · (N − tζN )

)3

Ẑ {ti },λ,h
N ,ω (0) , (B.4)

where A is a positive constant. To derive this bound, we resort to the equation
(1.13) that expresses Z N ,ω(0) in terms of random walk excursions. We recall that
K (2n) is the discrete probability density of the first return time of the walk S to 0,
and that K (t) ≥ 1/(A t3/2), t ∈ 2N, for some positive constant A: it follows that
for a1, . . . , ak ∈ 2N

K (a1 + . . . + ak) ≤ 1 ≤ Ak (a1 · . . . · ak)3/2 K (a1) · . . . · K (ak) . (B.5)

This gives us an upper bound to the entropic cost needed to split a random walk
excursion of length (a1 + . . . + ak) into k excursions of lengths a1, . . . , ak .

Now let us come back to the second line of (1.13), that can be rewritten as

Z N ,ω(0) =
∑

{xi }⊆{0,...,N }∩2N

G({xi }) . (B.6)

A first observation is that if we restrict the above sum to the {xi } such that
{xi } ⊇ {ti }, then we get Ẑ {ti }

N ,ω(0). Now for each {xi } we aim at finding an upper
bound on the term G({xi }) of the form c · G({xi } ∪ {ti }) for some c > 0 not
depending on {xi }. Each term G({xi }), see 1.13, is the product of two terms: an
entropic part depending on K (·) and an energetic part depending on ϕ(·). Replacing
the entropic part costs no more than

cent := A2ζN

(
ζN∏

i=1

(ti − ti−1) · (N − tζN )

)3

, (B.7)

thanks to B.5. On the other hand, the cost for replacing the energetic part is easily
bounded above by

cenergy := 2ζN , (B.8)

so that the bound G({xi }) ≤ c · G({xi } ∪ {ti }) holds true with c := cent cenergy.
Replacing in this way each term in the sum in the r.h.s. of (B.6), we are left with a
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sum of terms G({yi }) corresponding to sets {yi } such that {yi } ⊇ {ti }. It remains to
count the multiplicity of any such {yi }, that is how many original sets {xi } are such
that {xi } ∪ {ti } = {yi }. Sets {xi } satisfying this last condition must differ only for
a subset of {ti }, hence the sought multiplicity is 2ζN (the cardinality of the parts of
{ti }) and the bound B.4 follows.

Therefore we get∣∣∣∣ log Ẑ {ti },λ,h
N ,ω (0)

N
− log Zλ,h

N ,ω(0)

N

∣∣∣∣ ≤ (2 log 2A)
ζN

N

+ 3
1

N
log

(
ζN∏

i=1

(ti − ti−1) · (N − tζN )

)
≤ (2 log 2A)

ζN

N

+ 3
ζN + 1

N
log

(
N

ζN + 1

)
, (B.9)

where in the second inequality we have made use of the elementary fact that
once the sum of k positive numbers is fixed, their product is maximal when all
the numbers coincide (for us k = ζN + 1). Since by hypothesis ζN /N → 0 as
N → ∞, the Lemma is proved. �

Now we are ready to prove the characterization of L and D in terms of T C .
Fix any C > 1.

Proposition B.2. A point (λ, h) is localized, that is h < hc(λ), if and only if
E[T C ] < ∞.

Proof: We set A := {ω : T C (ω) < ∞}. Observe that for ω ∈ AC we have
Z N ,ω(0) ≤ C for every N ∈ 2N, and consequently log Zλ,h

N ,ω(0)/N → 0 as N →
∞.

Consider first the case when the random variable T C is defective, that
is P[AC] > 0 (this is a particular case of E[T C ] = ∞). Since we know that
log Zλ,h

N ,ω(0)/N → F(λ, h), P( dω)–a.s., from the preceding observation it follows
that F(λ, h) = 0 and the Proposition is proved in this case.

Therefore in the following we can assume that T C is proper, that is P(A) = 1,
so that equation (B.1) holds for almost every ω. Setting θ−1A := {ω : θω ∈ A},
we have P(θ−1A) = 1 since P is θ–invariant, and consequently P(∩∞

k=0θ
−kA) = 1,

which amounts to saying that (B.1) can be actually strengthened to

Zλ,h
T C (θ kω),θ kω

(0) ≥ C ∀k ≥ 0, P( dω)−a.s. (B.10)

Observe that the sequence {(θT C (ω)ω)n}n∈N has the same law as {ωn}n∈N and it is
independent of FT C . We can define inductively an increasing sequence of stopping
times {Tn}n∈N by setting T0 := 0 and Tk+1(ω) − Tk(ω) := T C (θTk (ω)ω) =: Sk(ω).
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We also set ζN (ω) := max{n : Tn(ω) ≤ N }. Since {Sk}k∈N is an IID sequence, by
the strong law of large numbers we have that, P( dω)–a.s., Tn(ω)/n → E[T C ] as
n → ∞, and consequently ζN (ω)/N → 1/E[T C ] as N → ∞ (with the conven-
tion that 1/∞ = 0).

Now let us consider the lower bound Ẑ N ,ω(0) corresponding to the sequence
{ti } = {Ti (ω)}: from B.2 and B.10 we get that P( dω)–a.s.

Ẑ {Ti (ω)},λ,h
N ,ω (0) =

ζN (ω)−1∏
i=0

Zλ,h
T C (θTi ω),θTi ω

(0) · Zλ,h

N−TζN (ω)(ω),θ
TζN (ω) ω

(0)

≥ CζN (ω) · c

N 3/2
, (B.11)

where c is a positive constant (to estimate the last term we have used the lower
bound Zk(0) ≥ c/k3/2, cf. 1.5), and consequently

F(λ, h) = lim
N→∞

log Zλ,h
N ,ω(0)

N
≥ lim inf

N→∞
log Ẑ {Ti (ω)},λ,h

N ,ω (0)

N
≥ log C

E[T C ]
. (B.12)

It follows that if E[T C ] < ∞ then F(λ, h) > 0, that is (λ, h) is localized.
It remains to consider the case E[T C ] = ∞, and we want to show that this

time Ẑ N ,ω(0), defined in (B.11), gives a null free energy. In fact, as T C (η) is
defined as the first N such that Z N ,η(0) ≥ C , it follows that ZT C (η),η(0) cannot be
much greater than C . More precisely, one has that

ZT C (η),η(0) ≤ C exp (2λ|ηT C (η)−1 + ηT C (η)|) , (B.13)

and from the first line of B.11 it follows that

1

N
log Ẑ N ,ω(0) ≤ ζN (ω) + 1

N
log C + 2λ

N

ζN (ω)∑
i=1

(|ωTi (ω)| + |ωTi (ω)−1|) . (B.14)

We estimate the second term in the r.h.s. in the following way:

1

N

ζN (ω)∑
i=1

(|ωTi (ω)| + |ωTi (ω)−1|) = 1

N

N∑
k=1

1{∃i : Ti (ω)=k}(|ωk | + |ωk−1|)

≤
(

1

N

N∑
k=1

1{∃i : Ti (ω)=k}

)1/2 (
1

N

N∑
k=1

(|ωk | + |ωk−1|)2

)1/2

(B.15)

≤
√

ζN (ω)

N
· 2

√√√√ 1

N

N∑
k=1

|ωk |2 ≤ A

√
ζN (ω)

N
,

for some positive constant A = A(ω) and eventually as N → ∞, having used
the Cauchy–Schwarz inequality and the law of large numbers for the sequence
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{|ωk |2}k∈N. Therefore

1

N
log Ẑ N ,ω(0) ≤ ζN (ω) + 1

N
log C + 4λA

√
ζN (ω)

N
, (B.16)

and since E[T C ] = ∞ implies ζN (ω)/N → 0, P( dω)–a.s., we have
log Ẑ N ,ω(0)/N → 0, P( dω)–a.s. Then Lemma B.1 allows us to conclude that
F(λ, h) = 0, and the proof of the Proposition is completed. �

B.2. Proof of the Lower Bound on hc

To prove equation (3.1), we are going to build, for every (λ, h) such that
h < h(λ), a random time T such that E[T ] < ∞ and Zλ,h

T (ω),ω(0) ≥ C , for some

C > 1. It follows that T C ≤ T , yielding that E[T C ] < ∞ and by Proposition B.1
(λ, h) is localized, that is, h(λ) ≤ hc(λ).

Given M ∈ 2N and q < −h, we start defining the stopping time

τM (ω) = τM,q (ω) := inf

{
n ∈ 2N : ∃k ∈ 2N, k ≥ M :

∑n
i=n−k+1 ωi

k
≤ q

}
.

(B.17)

This is the first instant at which a q–atypical stretch of length at least M appears
along the sequence ω. The asymptotic behavior of τM is given by Theorem 3.2.1
in [10, Section 3.2] which says that P( dω)–a.s.

log τM (ω)

M
→ 
(q) asM → ∞ , (B.18)

where 
(q) is Cramer’s Large Deviations functional for ω, (3.6). We also give a
name to the shortest of the terminal stretches in the definition of τM :

RM (ω) = RM,q (ω) := inf

{
k ∈ 2N, k ≥ M :

∑τM
i=τM −k+1 ωi

k
≤ q

}
, (B.19)

and it is not difficult to realize that RM ≤ 2M .
We are ready to give a simple lower bound on the partition function of size

τM,q (for any M ∈ 2N and q < −h): it suffices to consider the contribution of the
trajectories that are negative in correspondence of the last (favorable) stretch of
size RM , and stay positive the rest of the time. Recalling that we use K (·) for the
discrete density of the first return time to the origin and that by (1.12) we have
K (2n) ≥ c/n−3/2 for a constant c > 0, we estimate

Zλ,h
τM (ω),ω(0) ≥ 1

4
K (τM − RM ) K (RM ) e−2λ(q+h)RM ≥ c2

4τ
3/2
M (2M)3/2

e−2λ(q+h)M

≥ c′ exp

{
3

2
M

[
(−4λ/3)q − log τM

M
− (4λ/3)h − log M

M

]}
,

(B.20)
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where c′ := c2/(8
√

2).
Having in mind (B.18), we define a random index 	 = 	A,ε,q depending on

the two parameters A ∈ 2N, ε > 0 and on q:

	(ω) = 	A,ε,q (ω) := inf

{
k ∈ 2N, k ≥ A :

log τk,q (ω)

k
≤ 
(q) + ε

}
, (B.21)

and we finally set T (ω) = TA,ε,q (ω) := τ	(ω)(ω). Then for the partition function of
size T (ω) we get

Zλ,h
T (ω),ω(0) ≥ c′ exp

{
3

2
A

[
(−4λ/3)q − 
(q) − (4λ/3)h − log A

A
− ε

]}
.

(B.22)
The fact that E[TA,ε,q ] < ∞ for any choice of A, ε, q (with q < −h) is proved

in Lemma B.3 below. It only remains to show that for every fixed (λ, h) such that
h < h(λ), or equivalently

(4λ/3)h < log M(−4λ/3) , (B.23)

the parameters A, ε, q can be chosen such that the right–hand side of equation
(B.22) is greater than 1.

The key point is the choice of q. Note that the generating function M(·) is
smooth, since finite on the whole real line. Moreover for all λ ∈ R there exists
some q0 ∈ R such that

log M(−4λ/3) = (−4λ/3)q0 − 
(q0) , (B.24)

and from (B.23) it follows that q0 < −h. Therefore we can take q = q0, and
equation (B.22) becomes

Zλ,h
T (ω),ω(0) ≥ c′ exp

{
3

2
A

[
log M(−4λ/3) − (4λ/3)h − log A

A
− ε

]}
. (B.25)

It is now clear that for every (λ, h), such that (B.23) holds, by choosing ε sufficiently
small and A sufficiently large, the right–hand side of (B.25) is greater than 1, and
the proof of (3.1) is complete.

Lemma B.3. For every A ∈ 2N, ε > 0 and q < −h the random variable T (ω) =
TA,ε,q (ω) defined below B.21 is integrable: E[T ] < ∞.

Proof: By the definition (B.21) of 	 = 	A,ε,q we have

TA,ε,q ≤ exp ((
(q) + ε) 	A,ε,q ) , (B.26)

so it suffices to show that for any β > 0 the random variable exp (β 	A,ε,q ) is
integrable.
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For any l ∈ 2N, we introduce the IID sequence of random variables {Y l
n}n∈N

defined by

Y l
n := 1

l

nl∑
i=(n−1) l+1

ωi . (B.27)

By Cramer’s Theorem (10) we have that for any fixed q < 0 and ε > 0 there exists
l0 such that P(Y l

1 ≤ q) ≥ e−l(
(q)+ε/2) for every l ≥ l0. By (B.21) have that

{	 > l} ⊆ {τl > exp ((
(q) + ε)l)} ⊆
�M/ l�⋂

i=1

{Y l
i > q} , (B.28)

with M := exp((
(q) + ε)l), so that

P(	 > l) ≤ (
1 − e−l(
(q)+ε/2)

)�M/ l� ≤ exp
( − �M/ l�e−l(
(q)+ε/2)

)
≤ exp (− exp(lε/4)), (B.29)

where the last step holds if l is sufficiently large (we have also used 1 − x ≤ e−x ).
Therefore

P(exp (β 	) > N ) = P(	 > (log N )/β) ≤ exp(−N ε/4β ), (B.30)

when N is large, and the proof is complete. �
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